Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 642: 112-119, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001450

RESUMO

Water dissociation is of fundamental importance in scientific fields and has drawn considerable interest in diverse technological applications. However, the high activation barrier of breaking the OH bond within the water molecule has been identified as the bottleneck, even for the water adsorbed on the graphene oxide (GO). Herein, using the density functional theory calculations, we demonstrate that the water molecule can be spontaneously dissociated on GO supported by the (111) surface of the copper substrate (Copper-GO). This process involves a proton transferring from water to the interfacial oxygen group, and a hydroxide covalently bonding to GO. Compared to that on GO, the water dissociation barrier on Copper-GO is significantly decreased to be less than or comparable to thermal fluctuations. This is ascribed to the orbital-hybridizing interaction between copper substrate and GO, which enhances the reaction activity of interfacial oxygen groups along the basal plane of GO for water dissociation. Our work provides a novel strategy to access water dissociation via the substrate-enhanced reaction activity of interfacial oxygen groups on GO and indicates that the substrate can serve as an essential key to tuning the catalytic performance of various two-dimensional material devices.

2.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458655

RESUMO

Developing new coating modification technology of aluminum nitride (AlN) powder for higher hydrolysis resistance is the key to prepare high-performance AlN ceramic substrate with water-based wet process in the future. In the this paper, The poly(vinyl pyrrolidone)-b-poly(Styrene/Itaconic anhydride) (PVP-b-P(St/ITA))block copolymer with PVP as the independent chain segment was designed and synthesized through reversible addition fragmentation chain transfer (RAFT) polymerization, which was used for the study on coating modification, hydrolysis resistance, and dispersion performance of AIN powder. The study results show that, when using PVP macromolecular chain transfer agent (PVP-CTA) for the RAFT chain extension and polymerization in St/ITA binary system, the molecular weight increases linearly and the molecular weight distribution tends to decrease with the monomer conversion rate, which is in line with the activity-controlled characteristics of RAFT polymerization. The copolymer PVP-b-P(St/ITA) was used to for surface modification treatment of submicron AlN powder to generate esterification reaction, which was absorbed and bound to the powder surface. Hydrolysis resistance and dispersion experiments were conducted for modified powder, and the crystal phase and micro structure of modified powder were analyzed and observed through XRD, SEM, and TEM. It was found that copolymer modification had no effect on the powder crystal phase. A 8-21 nm passivation layer was coated on the surface, which can exist stably for 10 h in 60 °C water. Zeta potential and laser particle analyzer tests showed that modified powder featured excellent water-based slurry dispersion performance, and certain self-dispersing characteristics. The highest Zeta potential appeared in pH 6~7, and the particle granularity was distributed uniformly with the median particle diameter of 875 nm. The powder hydrolysis resistance and dispersion performance are significantly improved.

3.
Molecules ; 26(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34641428

RESUMO

Poly(methyl acrylate)-b-poly(N-vinyl pyrrolidone/maleic anhydride/styrene) (PMA-b-P (NVP/MAH/St)) quaternary amphiphilic block copolymer prepared by reversible addition-fragmentation chain transfer (RAFT) was used to improve the anti-hydrolysis and dispersion properties of aluminum nitride (AIN) powders that were modified by copolymers. Its structure was characterized by Fourier transform infrared spectroscopy (FT-IR) and Hydrogen nuclear magnetic spectroscopy (1H-NMR). The results demonstrate that the molecular weight distribution of the quaternary amphiphilic block copolymers is 1.35-1.60, which is characteristic of controlled molecular weight and narrow molecular weight distribution. Through charge transfer complexes, NVP/MAH/St produces a regular alternating arrangement structure. After being treated with micro-crosslinking, AlN powder modified by copolymer PMA-b-P(NVP/MAH/St) exhibits outstanding resistance to hydrolysis and can be stabilized in hot water at 50 °C for more than 14 h, and the agglomeration of powder particles was improved remarkably.

4.
Nanoscale ; 13(36): 15231-15237, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34553730

RESUMO

Combining density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations, we show that oxygen functional groups exhibit unexpected spontaneous dynamic behaviors on the interior surface of single-walled carbon nanotubes (SWCNTs). The hydroxyl and epoxy migrations are achieved by the C-O bond breaking/reforming reactions or the proton transfer reaction between the neighboring epoxy and hydroxyl groups. It is demonstrated that the spontaneous dynamic characteristic is attributed to the sharply reduced energy barrier less than or comparable to thermal fluctuations. We also observe a stable intermediate state with a dangling C-O bond, which permits the successive migration of the oxygen functional groups. However, on the exterior surface of SWCNTs, it is difficult for the oxygen groups to migrate spontaneously because there are relatively high energy barriers, and the dangling C-O bond prefers to transform into the more stable epoxy configuration. The spontaneous oxygen migration is further confirmed by the oxygen migration process using DFT calculations and AIMD simulations at room temperature. Our work provides a new understanding of the behavior of oxygen functional groups at interfaces and gives a potential route to design new carbon-based dynamic materials.

5.
J Ophthalmol ; 2017: 6823965, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163989

RESUMO

PURPOSE: To investigate the ocular parameters of premature infants without ROP at gestational age (GA) more than 28 weeks and their relationship with growth parameters. METHODS: 76 preterm infants without ROP and 65 term infants were involved to undergo portable slit lamp, RetCam3, ultrasonic A-scan biometry, and cycloplegic streak examination at their 40 weeks' postconceptional ages (PCA). Ocular parameters of infants' right eye and growth parameters were used for analysis. RESULTS: All the infants were examined at 40 weeks' PCA. No significant difference was found between male and female in axial length of preterm infants (p = 0.993) and term infants (p = 0.591). Significant differences were found in axial length (AL), anterior chamber depth (ACD), lens thickness (LT), and vitreous depth (VD) between preterm and term infants. No significant correlation was found between AL and spherical equivalent in preterm infants' group. In preterm group, AL was significantly correlated with gestational age (GA), birth weight (BW), and head circumference (HC). CONCLUSIONS: Preterm infants had shorter AL, shallow ACD, thicker LT, and thinner VD compared to term infants. Refractive error in preterm infants at GA between 28 to 37 weeks was not related to axial length. Among all the growth parameters of preterm infants, GA, BW, and HC had effect on axial length.

6.
ACS Nano ; 2(3): 471-6, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19206572

RESUMO

Using simulation and theory, we demonstrate how nanoparticles can be harnessed to regulate the interaction between two initially stationary microcapsules on a surface and promote the self-propelled motion of these capsules along the substrate. The first microcapsule, the "signaling" capsule, encases nanoparticles, which diffuse from the interior of this carrier and into the surrounding solution; the second capsule is the "target" capsule, which is initially devoid of particles. Nanoparticles released from the signaling capsule modify the underlying substrate and thereby initiate the motion of the target capsule. The latter motion activates hydrodynamic interactions, which trigger the signaling capsule to follow the target. The continued release of the nanoparticles sustains the motion of both capsules. In effect, the system constitutes a synthetic analogue of biological cell signaling and our findings can shed light on fundamental physical forces that control interactions between cells. Our findings can also yield guidelines for manipulating the interactions of synthetic microcapsules in microfluidic devices.


Assuntos
Materiais Biomiméticos/química , Cápsulas , Coloides/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Simulação por Computador , Difusão , Substâncias Macromoleculares/química , Microfluídica/métodos , Conformação Molecular , Movimento (Física) , Tamanho da Partícula , Propriedades de Superfície
7.
J Chem Phys ; 127(3): 034703, 2007 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-17655451

RESUMO

Using a computational model, we investigate the motion of microcapsules inside a microchannel that encompasses a narrow constriction. The microcapsules are composed of a compliant, elastic shell and an encapsulated fluid; these fluid-filled shells model synthetic polymeric microcapsules or biological cells (e.g., leukocytes). Driven by an imposed flow, the capsules are propelled along the microchannel and through the constricted region, which is formed by two pillars that lie in registry, extending from the top and bottom walls of the channels. The tops of these pillars (facing into the microchannel) are modified to exhibit either a neutral or an attractive interaction with the microcapsules. The pillars (and constriction) model topological features that can be introduced into microfluidic devices or the physical and chemical heterogeneities that are inherently present in biological vessels. To simulate the behavior of this complex system, we employ a hybrid method that integrates the lattice Boltzmann model (LBM) for fluid dynamics and the lattice spring model (LSM) for the micromechanics of elastic solids. Through this LBM/LSM technique, we probe how the capsule's stiffness and interaction with the pillars affect its passage through the chambers. The results yield guidelines for regulating the movement of microcarriers in microfluidic systems and provide insight into the flow properties of biological cells in capillaries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...